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Th.e_K E£2~ system has been studied in a self-consistent manner, both to see if the Qr can be interpreted as a 
T = OK'E bound state, and to study such calculations in a situation where only one two-particle channel need 
be considered. We follow closely the method of Singh and Udgaonkar, and Pati, using for dynamical singularities 
both a short cut due to single particle exchange and a self-consistently determined distant left cut. Only the 
J — i+ partial wave is considered. The main result is a curve relating the strength (called g2) of the single-
particle exchange-forces to the position of a bound or resonant state. The binding energy is found to increase 
with increasing g2 until the mass of the bound state is about 1680 MeV. Further increases in g2 have essen
tially no effect. On the other hand, it is found that resonant states exist for g2<0, so that the calculation as it 
stands allows resonances with repulsive single-particle exchange forces. The calculation in its present form is 
consistent with bound or resonant states for both T = 0 and T= 1, the former at about 1680 MeV for reason
able values of g2. It is shown that the results are essentially independent of subtraction point, matching 
points, and similar parameters. The dependence of the results on the short cut and on the distant cut is dis
cussed. The manner in which calculations using only the Born approximation for the dynamical singularities 
can give the same results as ours is indicated. The possible existence of two zeros in Re D, noticed by Abers 
and Zachariasen, is briefly discussed. A second zero does appear in the present calculation at about 4 GeV., 
but results from the phase shift decreasing through Jx rather than from the Abers-Zachariasen mechanism. 
Thus, no alternative solution is found in the present calculation. 

I. INTRODUCTION 

TH E KS system, with strangenesss —3, is of 
interest for two reasons. First, the recently dis

covered1 12~, with Y~— 2, r = 0 , and /=•§+, may 
perhaps be considered dynamically as a T=0KS bound 
state in the ^3/2 partial wave. Second, it is a physical 
system strongly coupled to no other two-particle 
baryon-meson system, so that the results of a single-
channel calculation are of particular interest. In the 
following we examine the KEQr interaction in a self-
consistent manner for both of these reasons. 

The present calculation is a self-consistent one in the 
following sense. Values for the position and residue of 
the Or pole in the ^3/2 amplitude are guessed initially 
and used as input. Values for the same quantities are 
then obtained as output from an N/D solution. The 
new values are used as input, leading to new output 
values, and the procedure is repeated (by a computer) 
until the output and input values are the same, if 
possible. I t is not a true bootstrap calculation because 
the left-hand singularities are fixed input information 
(although the fixed parameters are varied over a wide 
range to obtain some idea of their effect). Such a 
bootstrap calculation is in principle possible since (for 
example) the 2 is perhaps partially a K% bound state 
held together by 12~ exchange, just as the 0~~ is perhaps 
a KS bound state held together primarily by 2 exchange. 
Since KE is coupled to TTL, 7TA, and KN, this is an 
interesting multichannel problem which we do not 
consider further. 

The ^3/2 partial-wave scattering amplitude gi+=N/D 
is characterized, from our point of view, by its singular-

* Supported by the National Science Foundation. 
*V. E. Barnes, P. L. Connolly, D. J. Crennell, B. B. Culuick, 

W. C. Delaneg et ah, Phys. Rev. Letters, 12, 204 (1964). 

ities. I t has a unitarity cut, built into D, and any bound 
states will appear as zeros of D. The dynamical singular
ities are those contained in N. 

In the present calculation we follow Singh and 
Udgaonkar2 (SU) and Pati3 (P) and take N to contain 
a nearby short cut due to single-particle exchange, and 
a distant cut. The latter is characterized by parameters 
which are self-consistently determined. In the more 
traditional bootstrap calculation one sets N equal to 
the amplitude for single-particle exchange. Although 
the two types of calculations give quite similar results, 
from some points of view they appear to be quite 
different. Their relation is discussed in some detail 
within the framework of our results. We also examine 
the problem, recently noted by Abers and Zachariasen,4 

of two alternative solutions to our self-consistent 
calculation. 

Section I I summarizes the details of the calculation. 
The main results are given in Sec. I l l (Table I and 
Fig. 1), and are discussed, along with the topics men
tioned above, in Sec. IV. 

II. DETAILS OF THE CALCULATION 

A calculation of this type has been carried out by 
Singh and Udgaonkar2 for the iV* and by Pati3 for the 
S*. Our treatment follows that of Pati quite closely; 
the reader is referred to his paper for additional details. 
For completeness we summarize the procedure to be 
followed. I t is assumed throughout that the Or has 
7 = f + , so only the ps/2 partial-wave amplitude will be 
considered. 

2 V. Singh and B. M. Udgaonkar, Phys. Rev. 130, 1177 (1963). 
We refer to this paper in the following as SU. 

3 J. C. Pati, Phys. Rev. 134, B387 (1964). We refer to this paper 
in the following as P. 

4 E. Abers and F. Zachariasen, California Institute of Technol
ogy (to be published). 
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The kinematics for baryon-meson scattering has 
been given in detail in the literature.5 We consider the 
process 

R(qd+B(pd-+R(qJ+3(pJ. (1) 
The four-momenta of the particles are given in the 
parentheses. Defining the Mandelstam variables s, t, 
and u by 

u=-(p2-qi)2, 

s+t+u=2m2+2fJ
2, 

where m is the S mass and JJ, the K mass, the baryon-
meson scattering amplitude has the form 

T=—A(s,t,u)+iyQB(s,t,u), 

where Q=%(qi+q2). The magnitude of the center-of-
mass three-momentum is given by 

f= [_s- ( w + / x )2 j j _ ( w - M )2 ] /45 . (2) 

W=s1{2 is the total energy in the center-of-mass system, 
and with 6 the center-of-mass scattering angle, t=—2q2 

( l - cos0 ) . ' 
Following SU and P we use the partial-wave ampli

tude 

g1+=sei8i+sm51+/<? (3) 
= { [ ( ^ + m ) 2 - i u

2 ] [ ^ 1 + {W~m)B{] 
+ l(W-m)2-f,2X~^2+(W+m)B2]}/16Tq2

y (4) 

where 

1 r1 

(AhBi) = - / d(cosd)Pi(cosd)(A(s,t,u),B(s,t,u)). (5) 
2 7 - 1 

The positions of the singularities of a general partial-
wave amplitude have beenfigiven by Kennedy and 
Spearman,6 and for this particular amplitude they have 
been considered in detail in the complex W plane by 
Frautschi and Walecka.5 Discussions of the singularities 
and approximations to them for the s plane are given 
in SU and P. In particular, singularities arising from 
single-baryon (2) or A in our problem) exchange, which 
contributes terms of the form g2/(m^2—u) to the 
invariant amplitudes, have been retained. If the A and 
2 masses were the same then g1+

A and gi+x would be 
identical, except for the coupling constant factor. The 
sum of the two would be the same as g i +

s except for the 
value of the coupling constant. We will work in this 
approximation and thus retain only gi+s, with a coupling 
constant g2 which characterizes the strength of the Born 
approximation. We will always mean this more general 
case when we refer to 2) exchange. The value of g2 will 
be discussed later. 

6 See, for example, S. C. Frautschi and J. D. Walecka, Phys. 
Rev. 120, 1486 (1960). 

6 J . Kennedy and T. D. Spearman, Phys. Rev. 126, 1596 (1962). 

K A N E 

The partial-wave amplitude then contains the term 

gi+
z(s) = g2{L(W+m)2~^(W~m^)Q1(a) 

+Z(W-m)2-^(W+m^)Q2(a)}/Sq\ (6) 
where 

a=l+(2m2+2fJ
2-m^2~s)/2q2, (7) 

and in our notation g^N2—15 (so that a factor l/47r has 
been absorbed into the coupling constant). This gives a 
cut from 

s=Li = (m2—i^f/m-i ~ SOm,2 

to 
s=L2=2 (m2-\-^2) — ms 2 ~ 130m,2, 

and a cut for — oo <O$$0. The short cut from Lx to L2 

is explicitly retained. The cut for negative s is replaced 
by two Balazs-type poles,7 with fixed positions but with 
residues to be determined. The procedure for doing 
this is described in detail by Pati. 

The exchange of higher mass states in the u channel, 
and /-channel singularities, contributes other unphysical 
cuts in the right half-plane, all of which we neglect, and 
cuts for s^O. The latter may be considered to be 
contained in the Balazs poles. 

The partial-wave amplitude is written in the form 

gi+(s) = N(s)/D(s), (8) 

where, as usual, TV contains all the unphysical singular
ities and D contains the right-hand cut. We write, 
ignoring inelastic processes, 

D(s) = l / ds' (9) 

and 

N(s) = h/(s+s,)+h/(s+s,)+Nn(s), (10) 

where 

Nn(s) = - / ds' — . (11) 
7T J L\ S' — S 

The first two terms are the Balazs poles, with s3= lSmT
2 

and ,?4= 720m/. The determination of bz and b\ will be 
discussed below. 

Imgi+
S(,?) is obtained from Eq. (6) to be 

Img1+^(s)=-wg2{l(W+m)2-^(W-m^P1(a) 
+ l(W~m)2-fj2'](W+mz)P2(a)}/16qK (12) 

To avoid solving coupled integral equations we follow 
Pati and in Eq. (11) for N(s) we write 

D(s')=l-(s'-So)/(sR-s0), 

taking advantage of the knowledge that D(SR) = 0 and 
£>(*>)= 1. This gives 

Nn(s) = Z(SB-s)J(s)-Jol/(sB-S0), (13) 

7 L A. P. Balazs, Phys. Rev. 126, 1220 (1962). 
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where 
1 rL* 

7 0 =- - / Img1+(s')ds', 
ir J Li 

1 r* Img l +(s ') 
J(s) = - J ds'. 

(14) 

(15) 

Writing 
TT J Li S —S 

s' — s s\ s / s2(s'-s) 

we note that 
Nn(s)-+const/s7 (16) 

for large s. Thus, following Pati, we expect that for 
s> (m-\-/j,)2~ 168mT

2 we can write 

# . ( * ) = (&i/(*-*i))+(*«/(*-*»)) . (17) 

Such a procedure is a convenient one, and it turns out 
that one can indeed find b\ and b2, depending on sR and 
so but not on s, for which Eq. (17), with si=90mv

2, 
s2=125m7r

2, gives approximately the same results as 
Eq. (13) for Nn if *> (m+fi)2^ 16SmT\ Below threshold 
we can use Eq. (13) for Nn> 

We then substitute N{s) from Eqs. (10) and (17) in 
Eq. (9) for D(s), obtaining 

D(S) = 1-«S-SO)/TT)Z biF(s,Si,s0), (18) 

where 

F(s,Sa,Sb) 

X.OO 

= / ds'— 
(m+n)2 S'(s' — S)(s' — Sa)(s' — Sb) 

We may also write 

N/(s) = b3/(s+si)+h/is+sd 

s-so r . qnNf,n(s') 

(19) 

and 

Df.n(s) = - dsf-
w A^H-M)2 S'(S' — S)(S'—SO) 

Finally one can use Eq. (18) in Eq. (11) to obtain an 
improved expression for Nn(s)-

To find 63 and b± we follow the procedure of SU and P, 
equating gi+(s) as given by Eq. (8), with gi+(s) as given 
by Eq. (4). The invariant amplitudes in the latter are 
given by a fixed energy dispersion relation, 

B(s,t,u) = -
Ri 

+ 
RQ 

appear in the direct channel (pole in s) because of its 
strangeness. A similar expression holds for A (s,t,u). 

Again following SU and P, we retain only the first two 
terms in Eq. (20). We note that (as emphasized in SU) 
the fixed-energy dispersion relations will only be used 
at a few discrete values of s. For a given i?s(g2), if the 
pz/2 projections of terms neglected in Eq. (20) are small 
compared to the p%/2 projection of Rz/(m2—u), at only 
the few points in s where Eq. (20) is used, then the 
neglect of such terms is justified. Their variation with 
energy and the location of their singularities would not 
be relevant. No further consideration will be given to 
this approximation. 

Thus, we take 

where gi+s(s) is given by Eq. (6), and 

y2l(W+m)2-^'] 
gi+°(*) = 

1 r ° ImBu(u',s) 
+ - / du' ; . (20) 

The dots represent other terms which might be included, 
for example A and Fx* exchange in the u channel, and 
^-channel singularities in general, particularly vector-
meson exchange-pole terms. Note that the Or can only 

(WR-W)l(WR+m)2-fx22 

(21) 

(22) 

72 is the residue of g1+® at S=SR=MU2 and is propor

tional to the square of the SKQ coupling constant. 
Equating the two forms for gi+ we then have 

lh/(s+sz)+bi/(s+SA)+Nn(s)y 

( S—So 4 \ 
( 1 L biF(s,Si,sQ) ) 

7 2 [ ( T ^ + w ) 2 - M
2 ] 

^1+ 
SW-

(WB-W)t(WB-tn)*-»*l 
(23) 

We now use Eq. (23) at two values of s, smi and sm2 
(and so it need not be correct except at smi and sm2), to 
give two equations from which we can determine b% 
and 64 in terms of y2 and WR. 

A computer program was written to accomplish the 
following procedure: For a given g2, s0, smv and sm2y 

(i) Choose a y2 and a WRin, 
(ii) Write Eq. (23) at s=smi and again at s=sm2, 
(iii) Solve the resulting equations for b% and b±. [Now 

D(s) is completely known J , 
(iv) Find the value of SR for which 

ReD(sR) = 0. (24) 

(v) Find y2 from 

7 2= - (l/2WR)(N(sR)/ReDf(sR)). (25) 

(vi) Repeat steps (i)-(v), using Y2 and SR as input 
in step (i), until 72=7in2 and SR=sRin( sRin and 7 i n

2 

being the output from the immediately previous 
iteration) to within some preassigned accuracy, if 
possible. 

(vii) Repeat steps (i)-(vi) for various initial guesses 
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FIG. 1. Strength of 
e x c h a n g e f o r c e s 
versus position of 
bound or resonant 
state, for smi = 75mn

2
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sw2=135 mj-, and 
So = 50mw

2. 

1800 1900 2000 
W/MeV 

of Tin2 and sRin, for various choices of a n d sm2, 
and for various values of g2. 

I t should be noted that n parameters (such as 
subtraction constants or additional left-hand-cut param
eters) could in principle be determined self-consistently 
by solving n equations from n matching points. 

III. RESULTS 

The results of the above procedure are presented in 
Table I and in Figs. 1 and 2. 

Table I gives an indication of the manner in which 

TABLE I. Some self-consistent solutions. The units for s are mr
2 and 

the coupling constants are dimensionless. 

the self-consistent results for y2 and SR depend on the 
matching points, the subtraction point, the initial 
guesses for y2 and SR, and the degree of self-consistency 
A. A set of values for y2 and sR is called self-consistent 
whenever, for a given iteration, both 

and 
\sRin—SR\<A 

| 7 i n 2 ~ Y 2 | < A . 

I t was found that the derivative of ReD(s) vanished 
at approximately the same value of s [_s~ (350± 10)m1

2~] 
for every stable, self-consistent solution, irrespective of 
the values of the parameters in Table I. The column in 
Table I headed Dm gives the value of ReD at its 
extremum, a positive value being a maximum and a 
negative value a minimum. Whether ReD had a max
imum or a minimum, and its value at the extremum, 
depended quite strongly on the other parameters in 
Table I. Furthermore, some of the sets of parameters 
did not give rise to self-consistent solutions (e.g., for 
sufficiently negative g2) and for some of these the 
position of the extremum would change (e.g., to 
s^ll^m-r2). The significance of these observations is not 
clear, but the values in the column Dm are useful for 
discussing the behavior of ReD. Note in particular the 
dependence of Dm on g2 when all other parameters are 
fixed. 

From Table I one can deduce that the self-consistent 
results are essentially independent of the matching 
points, the subtraction point, and the initial guesses for 
y2 and SR. A certain amount of care must be used, 
however, as some combinations of parameters may lead 
to trouble for apparently accidental reasons. For 
example, with both matching points between the short 
cut and threshold and g 2 ^45, we were unable to obtain 
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160 
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a self-consistent solution. For g2= 5 the same parameters 
gave no difficulty. 

The last solution in the first section, with Yin
2=0, is 

an amusing one, with gi+Q initially absent from Eq. (23). 
In Figs. 1 and 2 we show the self-consistent results for 

SR and 72 for smi=75mjr
2, sm 2= 135m/, and so—50niw

2, 
for a wide range of g2. The dots are actual results; some 
are also shown in Table I. The smooth curves are 
drawn for ease of visualization. The horitontal bars at 
g2=5 and g2=45 show the spread in output for changes 
in smi, sm2, so, and A. The particular shape of the g2 

versus SR curve is discussed in detail in the following. 
We note here, however, that self-consistent solutions 
exist for g 2 =0 (no single-particle exchange) and g2<0 
(single-particle-exchange repulsive). For g2^ — 5 no 
self-consistent solutions exist. We also point out that as 
g2 increases from 45 to 200 the binding energy increases 
by only a few percent. One should notice, finally, that 
self-consistent solutions with 7 2 ~ 0 do not occur for 
any g2. 

To make an estimate of the region of validity of our 
results we note two criteria which have in the past been 
used, and which give approximately the same result. 
First, inelastic effects should become important near 
the pion production threshold, which is at 5—196^/. 
Second, Martin and Wali8 chose to allow a zero of ReD 
imply a resonance or a bound state only for s roughly 
in the region from the short cut to the peaks of the 
principal-value integrals, 130mT

2<s^ 190mx
2 in our 

case. Thus results with SR> 1 9 0 W / are to be interpreted 
with caution. In particular, we note that the self-
consistent solutions for g 2<5 are outside this region. 

IV. DISCUSSION 

The Q- as the Result of a Dynamical Calculation 

We have seen in Sec. I l l that the KS system can be 
expected to have a bound or resonant state, at a mass 
which depends on the strength (g2) of the single-
particle-exchange contribution to the scattering ampli
tude. If g2~ 22 and if the state has isotopic spin T=0, 
then it is identical with the recently discovered1 member 
of the SU3 decuplet representation at about 1680 MeV, 
the Or, and may reasonably be identified with it. If, in 
addition, no other partial wave can be bound, then the 
assumptions of the present calculation would imply the 
existence of the fl~. The question of the isotopic spin of 
the bound or resonant state is particularly interesting, 
since the EK state with T— 1 can only be placed in a 
27-fold representation of SU3, and at present there is 
no evidence, experimental9 or theoretical,8 for the 
existence of the 27 in any spin state. 

In the approximation that W A = W S , the present 
calculation can include both the A and 2 exchange in 

8 A. W. Martin and K. C. Wali, Phys. Rev. 130, 2455 (1963); 
Nuovo Cimento 31, 1324 (1964). 

9 A. H. Rosenfeld, University of California Radiation Labora
tory Report UCRL 10897 (unpublished). 

the crossed channel and give a result for the K'ET=0 
or r = l state, merely by adjusting the value of g2. 
We have 

T = 0 : g2 = 3gK2Z2~gKAZ2 , 

T = 1 : g2 = gK2Z2+gKAZ2. 

That is, 2 exchange is attractive for both T=0 and 
T=l while A exchange is attractive for T— 1, repulsive 
for T=0. If we use the SU3 symmetric coupling con
stants given by Martin and Wali,8 we put g#232=15, 
0 ^ * A S 2 ^ 3 . 2 , so £ 2 ( r = 0 ) - 4 2 , g2(T=l)~18. Then 
from Fig. 1 we predict a T~0 bound state at about 
1660 MeV and a T= 1 bound state at about 1700 MeV. 
If, however, we use one-half these values, we find at 
T— 0 bound state at 1680 MeV and a T = l resonance at 
1825 MeV. The interested reader may try to sharpen 
these estimates. 

One should also include an estimate of the effect of 
Fi* exchange (from the point of view of SU3 this is 
necessary for self-consistency) and of vector-meson 
exchange. On the basis of analogous considerations for 
the wNN* system, however, these effects are expected 
to perhaps be of quantitative but probably not qualita
tive significance. 

Thus we conclude that the present calculation 
predicts a J=%+KE bound or resonant state for both 
T~0 and T— 1. Because we do not know the value of 
g2 we cannot make a definite prediction for the masses 
of these states, but for reasonable values of g2 the T = 0 
state could have (from Fig. 1) a mass of about 1680 
MeV. 

I t seems possible that a modified calculation, includ
ing inelastic effects, could have an effect on the g2 

versus SR curve mainly for SR> ( W + M ) 2 (which, from 
Fig. 1, corresponds to small and negative g2). That is, it 
would be surprising if a change in our approximate 
treatment of left-hand singularities had any effect on 
Fig. 1 for SR above threshold. But our neglect of inelastic 
effects should begin to affect our results in just this 
region. If the pion production channel had a repulsive 
effect the g2 versus SR curve would become more 
rectangular. Then values like g#2E2~8, gKA%2~0 could 
give a T= 0 bound state at about the Qr mass, while for 
T= 1 they give Z)(s)^0 and therefore no T= 1 bound 
or resonant state (as is the case now for g2^ — 5). 

Furthermore, suppose one imagined10 that in the real 
world all forces (left-hand singularities which appear in 
N) are as strong as possible, meaning by this that the 
system is unaware of a further increase in their strength, 
while it would notice a decrease. One would then find 
it remarkable that, according to Fig. 1, such a phenom
enon is (approximately) observed. This would allow 
us to predict the Or mass (the real world) to be the 

10 This is perhaps related to the work of G. F. Chew and S. C. 
Frautschi. See S. C. Frautschi, Regge Poles and S-Matrix Theory 
(W. A. Benjamin, Inc., New York, 1963), and references given 
there. 
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value of SR for which the system becomes unaware of 
further increases in g2, s#~(1680 MeV)2. The corre
sponding value of g2 would, of course, be that found for 
the T = 0 state in a totally self-consistent calculation. 

The Effect of the Dynamical Singularities 

I t was noticed by Pati in his calculation that the 
contribution of the short cut (Nn) was apparently small 
compared to that of the cut for s ̂  0. That this is also 
the case here is clear from Table II , where gi+

s , Nn, 

T A B L E I I . Results a t the matching points and at SR for a self-
consistent solution for g2 = 45, smi = 75 mj, j m 2 = 135 w,2 , and 
SR= 137.6 m^. Nn> Nf, gi+ s , and gi+Q are in uni t s of m^T1, D is 
dimensionless, and D' is in units of m-T2. 

s 

Sml 
Sm2 
SR 

a fi 

#1+ 

2.77 
101.7 

gu? 
0.14 
3.97 

Nn 

0.35 
0.33 
0.31 

Nf 

1.87 
3.79 
3.84 

ReZ>» 

10~4 

7X10~4 

0.01 

ReZ>/ 

0.24 
0.94 
0.99 

ReZV ReD/ 

10~4 0.047 

and Dn, all of which come from 2 exchange and are 
proportional to g2, are a small fraction of gi+

Q, Nf, and 
Df, respectively. The latter quantities depend on g2 in a 
more subtle manner, from solving Eq. (23) at the 
matching points. 

I t is clear from Fig. 1, however, that our results are 
quite sensitive to g2. We have not found the mechanism 
at the source of this apparent disagreement. The 
following considerations do, however, explain how our 
calculation (with a far left cut), and a calculation (such 
as that of Martin and Wali, who also find an ti~ self-
consistently) based on using for N(s) the Born approxi
mation to the amplitude, can give similar results. 

As can be seen from Eq. (11), Nn contains only the 
short-cut part of gi+s, and as shown in Eq. (16), Nn 

vanishes like constant/s. If we replace Nn by gi+s 

F I G . 3 . Nf(s) (dashed line), 
Nn(,s) (dash-dot line) and g i+ s 

(s) (solid line), vs. s} for 
sml = 75 mT

2, sm2 = 135 mT
2
t 

so = 50 mT
2, and g2 = 45. Nn and 

t t g i +
s are not shown on the short 

400 500 cut. Units for ordinate are m T
_1, 

for abscissa mT
2. 

>f and put Nf= 0 we find two effects. First, beyond thresh-
;- old g i +

s is an order of magnitude larger than Nn (see 
T Fig. 3). Second, ^i+s vanishes like g2/W (the unitarity 

limit on g1+ is S/W). So noting that 

/ /*°° ds\ / / r ds\ 

and combining the two effects, we see that ReDn could 
easily increase by an amount sufficient to allow ReD= 0 

*' even with ReDf=0. 
Further, it is apparent from Fig. 3 that N(s) and 

^ gi-^(s) are quite different, so that N(s) is not being 
is self-consistently determined to equal gi+sC?), even over 

some small region. But this is misleading because of the 
= difference in asymptotic behavior. To have the same 
/ effect on D, N would, in fact, have to be several times 

g i +
s near threshold. Thus, from the point of view of 

their contribution to D(s), it is reasonable that Nf+Nn 

and gi+s can have the same effect, though their magni-
= tudes are quite different near threshold. I t is their high-

energy behavior which leads to their equivalence. A 
e physical reason for their equivalence and for the strong 
d dependence of Nf on g2 has not been found. We note, 
a however, that Eq. (23), used at the matching points, 
e does in fact determine Nf in terms of g i +

s and gi+
Q. 

e The Second Zero of D(s) 
a 
e I t has been suggested by Abers and Zachariasen4 that, 
r in a ^-wave bootstrap calculation, if ReD(s) has a zero 
b. on one side of threshold it is likely to have one on the 

other side as well. A second zero is indeed found in the 
present calculation. Some examples are shown in the 
last part of Table I. However, the residue y2 at the 

e second zero is negative. This is because N(s) is positive 
n everywhere to the right of the short cut for our calcula-
s tion, while ReD'(s) necessarily changes sign between 
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the two zeros. This is equivalent to the statement that 
the phase shift is decreasing through \-w at the second 
zero, because the derivative of the phase shift is 
proportional to (—ReD'/N). Thus, our second zero is 
not due to the Abers-Zachariasen mechanism, and no 
alternative solution of the Abers-Zachariasen type is 
present. 

I. INTRODUCTION 

THE presence of divergences in quantum field 
theory leads one to consider the possibility of 

modifying the formalism by introducing a fundamental 
length into the theory. Although the proof by Kail en1 

has recently been questioned,2,3 it still seems not un
likely that the renormalization constants of quantum 
electrodynamics and other field theories are indeed 
infinite. Although the renormalization theory permits 
one to get finite results for physically observable 
quantities in any order of perturbation theory, the 
existence of the infinite quantities makes one feel some
what uneasy about the theory. Moreover, in the model 
proposed by Lee,4 it has been shown5 that the infinite 
coupling constant renormalization leads in an exact 
solution to the existence of physically unacceptable 
"ghost'' states, which destroy the unitarity of the S 
matrix; and it may be6 that similar difficulties are 
contained in the more realistic field theories as well. 
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It is often stated that the divergences arise from the 
concept of a point particle. This is true, but in a some
what indirect sense. In the present theory, due to the 
possibility of pair creation, a single particle cannot be 
localized more closely than its Compton wave length 
without losing its identity as a single particle; i.e., if the 
mass of the particle is m, its position will be uncertain 
by Ax>l/m. (Throughout this paper we use natural 
units: fi=c=\.) Therefore, it might be more accurate 
to say that the divergences arise from the assumption 
that field quantities (such as electric field strength, 
charge density, etc.) averaged over arbitrarily small 
space-time regions are observable in principle, thus 
making it physically meaningful to make use of local 
interactions in the theory. The work of Bohr and 
Rosenfeld7-9 tells us how these quantities can be meas
ured in the case of quantum electrodynamics using test 
bodies equipped with springs, etc. However, these 
authors assume that test bodies having any desired 
properties can exist in principle. It is clear that the 
average of a field quantity in a volume V cannot be 
measured by a test body unless the test body itself is 
known to be located in the volume under study. It is 
therefore possible to state that the divergences in a 
field theory arise, not from the assumption that the 
particles being studied in the theory are point particles, 
but from the assumption that point (or arbitrarily 

7 N. Bohr and L. Rosenfeld, Kgl. Danske Videnskab. Selskab, 
Mat. Fys. Medd. 12, No. 8 (1933). 

8 N. Bohr and L. Rosenfeld, Phys. Rev. 78, 794 (1950). 
9 L. Rosenfeld, in Niels Bohr and the Development of Physics, 

edited by W. Pauli (Pergamon Press, Inc., New York, 1955), 
pp. 70-95. 
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Possible Connection Between Gravitation and Fundamental Length* 
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An analysis of the effect of gravitation on hypothetical experiments indicates that it is impossible to 
measure the position of a particle with error less than Ax> V G= 1.6X 10-33 cm, where G is the gravitational 
constant in natural units. A similar limitation applies to the precise synchronization of clocks. I t is possible 
that this result may aid in the solution of the divergence problems of field theory. An equivalence is estab
lished between the postulate of a fundamental length and a postulate about gravitational field fluctuations, 
and it is suggested that the formulation of a fundamental length theory which does not involve gravitational 
effects in an important way may be impossible. 


